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Abstract A linkage map of Chinese cabbage (Brassica
rapa) was constructed to localize the clubroot resistance
(CR) gene, Crr3. Quantitative trait loci analysis using an
F3 population revealed a sharp peak in the logarithm of
odds score around the sequence-tagged site (STS)
marker, OPC11-2S. Therefore, this region contained
Crr3. Nucleotide sequences of OPC11-2S and its proximal

markers showed homology to sequences in the top arm
of Arabidopsis chromosome 3, suggesting a synteny
between the two species. For Wne mapping of Crr3, a
number of STS markers were developed based on geno-
mic information from Arabidopsis. We obtained poly-
morphisms in 23 Arabidopsis-derived STS markers, 11
of which were closely linked to Crr3. The precise posi-
tion of Crr3 was determined using a population of 888 F2
plants. Eighty plants showing recombination around
Crr3 locus were selected and used for the mapping. A
Wne map of 4.74 cM was obtained, in which two markers
(BrSTS-41 and BrSTS-44) and three markers (OPC11-
2S, BrSTS-54 and BrSTS-61) were cosegregated.
Marker genotypes of the 21 selected F2 families and CR
tests of their progenies strongly suggested that the Crr3
gene is located in a 0.35 cM segment between the two
markers, BrSTS-33 and BrSTS-78.

Introduction

Clubroot disease caused by Plasmodiophora brassicae
is one of the most serious diseases in Chinese cabbage
(Brassica rapa) and other Brassica crops. P. brassicae is
a soil-borne, obligate pathogen. The pathogen infects
the roots of plants, which start abnormal growth and
Wnally result in massive galls, called clubs. This abnor-
mal growth prevents the roots from taking up water
and nutrients, resulting in the slow growth of host
plants. Consequently, the disease reduces crop quality
and the commercial value of the products. Because the
pathogen survives as resting spores for long time
periods in the soil, it is hard to control the disease by
cultural practice or agrochemicals. Thus, the breeding
of resistant cultivars is one of the most eVective
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approaches to minimize crop loss from infection with
this pathogen.

Although no high-resistance resources have been
found among varieties of Chinese cabbage, resistance
resources to the pathogen have been found in some
European turnips (Wit 1964; Williams 1966; Yoshikawa
1993). Clubroot resistance (CR) cultivars of Chinese
cabbage have been bred by introducing the resistance
gene from CR European turnips into Chinese cabbage
(Yoshikawa 1981). Yoshikawa (1993) reported that
resistance in European turnips seems to be controlled
by a single dominant gene and some genes with minor
eVects. In addition, European turnips have at least
three independent dominant genes that each confers
resistance to diVerent P. brassicae pathotypes (Wit
1964; Toxopeus and Janssen 1975; Crute et al. 1980).

Recent molecular marker technology has revealed
four independent CR genes in B. rapa. Crr1 and Crr2,
derived from the European turnip Siloga, were reported
by Suwabe et al. (2003). Piao et al. (2004) found CRb
derived from the CR Chinese cabbage cultivar, ‘CR
Shinki’. Another CR gene, Crr3 derived from the Euro-
pean turnip Milan White has also been reported (Hirai
et al. 2004). DNA markers linking these four CR genes
have also been developed. Simple sequence repeat
(SSR) markers, BRMS088 and BRMS096, link to Crr1
and Crr2, respectively (Suwabe et al. 2003). Several
molecular markers linked to CRb have been developed
by converting ampliWed fragment length polymorphism
(AFLP) markers into sequence-characterized ampliWed
region (SCAR) markers (Piao et al. 2004). OPC11-2S
linked to Crr3 has been developed from a random ampli-
Wed polymorphic DNA (RAPD) fragment (Hirai et al.
2004). These markers can be used for marker-assisted
selection (MAS) in the breeding of Chinese cabbage cul-
tivars. However, molecular markers are sometimes
monomorphic in a breeding population. Therefore, a sin-
gle linkage marker is not enough for breeders and a set of
linkage markers should be developed for MAS.

From sequence analysis of the linkage markers to
Crr1 and Crr2, we have recently found that these two
regions have homology to the central part of chromo-
some 4 of Arabidopsis thaliana (Suwabe et al. 2006).
These Wndings suggest that these two loci originate
from the same region of the ancestral genome. In con-
trast, it is unknown whether Crr3 and CRb evolved
from a common origin to that of Crr1 and Crr2. There-
fore, increasing the number of linkage markers of Crr3
and CRb may be useful to understand their evolution-
ary origin, as well as to breed CR cultivars with MAS.

In this article, we describe the Wne mapping and
quantitative trait loci (QTL) analysis of Crr3. A num-
ber of DNA markers linked to Crr3 were developed

using the Arabidopsis DNA database. Synteny analysis
of the genome region around Crr3 suggested that this
locus originated from a chromosomal segment diVerent
from Crr1, Crr2 and CRb. The usefulness of these new
molecular markers and the evolutionary origin of CR
loci are discussed.

Materials and methods

Plant materials

A CR-turnip inbred line, N-WMR-3, was used as the
pollen parent. This is a parental line of the F1 hybrid
CR-turnip cultivar, ‘CR Shinano’, which has a CR trait
derived from the European fodder turnip, Milan White
(Otani et al. 1982). The Chinese cabbage doubled hap-
loid (DH) line, A9709, which is susceptible to the club-
root pathogen, was used as the seed parent. A
population of 81 F3 families was obtained by bud polli-
nation of each F2 line derived from crossing A9709 and
N-WMR-3. The F3 population was used for genetic and
linkage analyses. The F4 plants, obtained by selWng the
F3 plants, were used for scoring the disease index (ID)
(Suwabe et al. 2003) for the CR trait. These scores
were used as the phenotype of each F3 line, as
described previously (Hirai et al. 2004).

For Wne mapping, a population of 888 F2 plants was
obtained by selWng the F1 plants derived from crossing
of the above parentage. This population was screened
with two DNA markers linked to Crr3, BrSTS-20 and
BrSTS-26, to identify recombinants in this region. The
selected 80 plants were used for Wne mapping around
Crr3 locus. Parts of the selected plants were selfed to
obtain F3 seeds. The F3 plants were used for scoring the
ID, which was used as the phenotype of each F2 family.

Pathogen and CR test

The Ano-01 isolate of the clubroot pathogen (P. brass-
icae), which was maintained by infection of the Chi-
nese cabbage cultivar ‘Muso’ (Takii & Company Ltd,
Kyoto, Japan), was used for the test. The infection pro-
Wle of this isolate has been reported by Kuginuki et al.
(1999). The host range of the isolate was narrower than
that of Wakayama-01, the isolate used in a previous
study (Suwabe et al. 2003).

The CR test was performed three times from
September 2005 to December 2005, as previously
described (Hirai et al. 2004), with minor modiWcations
of the culturing conditions, shown below. The infected
plants were grown in a greenhouse maintained at a
minimum temperature of 25°C under natural daylight
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conditions. Tungsten lights (2 �mol/m2/s) were turned
on from sunset to 9:00 p.m. to maintain long-day condi-
tions. The mean ID of the triplicated tests was used for
subsequent genetic analysis.

Development of genetic markers linked to Crr3

PCR primers were designed based on the Arabidopsis
genome database at the National Center for Biotechnol-
ogy Information (http://www.ncbi.nih.gov/). Based on
the exon sequences, primers were designed using
Primer3 software (http://www.frodo.wi.mit.edu/cgi-bin/
primer3/primer3_www.cgi) (Rozen and Skaletsky 2000)
to amplify »1 kb fragments containing introns to obtain
maximal polymorphisms. The primers were used to
amplify genomic fragments of B. rapa. The ampliWed
fragments of the expected sizes were cut from the gel,
extracted using the QIAquick gel extraction kit (Qiagen,
Valencia, CA, USA), and ligated to a pCR-XL-TOPO
vector (Invitrogen, Carlsbad, CA, USA) or a pGEM-T
vector (Promega Corporation, Madison, WI, USA). The
resultant plasmids were sequenced with an ABI 310
Genetic Analyzer (Applied Biosystems, Foster City,
CA, USA) and the sequence was used to design new
primer pairs for detection of polymorphisms. In some
cases, primers based on the Arabidopsis genome were
directly used for detection of polymorphisms in B. rapa.
TCR05, a linkage marker for CRb (Piao et al. 2004), was
also examined in this study. However, because ampliW-
cation of the TCR05 fragment was rather faint, the
ampliWed fragment was sequenced and the Xanking
sequence was obtained by thermal asymmetric inter-
laced (TAIL)-PCR (Liu and Whittier 1995). A pair of
new primers was designed and used for the linkage
marker of CRb (Table 1). Two RFLP probes of B.
napus, BN142 and BN308 (Harada et al. 1988), were
sequenced to develop PCR-based markers for B. rapa
(Table 1). The nucleotide sequences reported here have
been deposited in the DDBJ/EMBL/GenBank data-
bases under accession numbers AB265743–AB265780.

Marker analysis

Genomic DNA was isolated from fresh or freeze-dried
leaves using the CTAB method (Murray and Thompson
1980). The redesigned marker was ampliWed by PCR in
10 �l of reaction mixture containing 10 ng of genomic
DNA, 1 £ PCR buVer (supplied by TaKaRa Bio, Otsu,
Japan), 0.25 U of Taq DNA polymerase (TaKaRa Bio),
2 nmol of each dNTP, and 5 pmol of each primer. The
reaction was performed using a GeneAmp PCR System
9700 (Applied Biosystems) with the following parame-
ters: 1 cycle of 94°C for 30 s; 35 cycles of 94°C for 30 s,

optimized annealing temperature for 30 s (Table 1), and
72°C for 1 min; and a Wnal extension at 72°C for 3 min.
SSR markers of B. rapa were ampliWed as previously
reported (Suwabe et al. 2002, 2006). RAPD analysis was
conducted with Operon primers (Operon Biotechnolo-
gies, Huntsville, AL, USA) as described previously
(Hirai et al. 2004). AmpliWed products were separated
on a 1.5% or 3% agarose gel.

Linkage analysis and map construction

Segregation of each marker in the F3 population
(n = 67) (Hirai et al. 2004) and the screened F2 popula-
tion were scored. Based on the obtained data, a linkage
map at the region for Crr3 was constructed using Join-
Map ver. 3.0 (Van Ooijen and Voorrips 2001). A mini-
mum logarithm of odds (LOD)-likelihood score of 4.0
was used for map construction. The Kosambi map
function (Kosambi 1944) was used to calculate the
genetic distance between markers. A QTL analysis of
CR was carried out using MapQTL ver. 4.0 (Van
Ooijen et al. 2000). An interval mapping analysis
(Lander and Botstein 1989; Van Ooijen 1992) was
conducted for detection of QTL.

Results

Development of DNA markers based on genomic 
information of Arabidopsis

Preliminary genome mapping and QTL analysis of the
F3 population revealed that the SSR markers,
BRMS058 and BRMS206, are linked to the CR gene,
Crr3. The mapping data indicated that the CR locus,
Crr3, was located between BRMS058 and BRMS206.
These linkage markers and the previously identiWed
STS marker, OPC11-2S, showed sequence homology to
the top arm of the Arabidopsis chromosome 3 (Table 1)
(Hirai et al. 2004). Therefore, it is likely that this region
of the B. rapa genome has conserved synteny with the
top arm of the Arabidopsis chromosome 3. We then
tried to add more linkage markers around the Crr3
locus using genomic information of Arabidopsis.

We designed 82 primer pairs based on open reading
frames (ORFs) in chromosome 3 of the Arabidopsis
genome. These primers were used for the ampliWcation
of genome sequences from the parent B. rapa plants. Of
the 82 primer pairs tested, 48 pairs (59%) ampliWed
fragments of the expected sizes. Two of the primers,
BrSTS-20 and BrSTS-28, ampliWed clear polymorphic
fragments. However, the remaining 46 primer pairs
ampliWed monomorphic bands or unclear polymorphic
123
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bands. Two of the 46 primer pairs (BrSTS-16 and
BrSTS-33) showed polymorphic bands after the ampli-
Wed products were digested with restriction enzymes.
The primers based on the Arabidopsis genome sequence
were used for directly scoring the genotype of these four
loci (Table 1). The remaining monomorphic and unclear
polymorphic fragments ampliWed from both parent
plants were cloned and sequenced. New primer pairs
were designed when nucleotide polymorphisms were
found between the sequences of the parental lines.
Based on the nucleotide sequences, eleven, seven and
one of the 44 pairs were successfully converted to CAPS,
indel and SSR markers, respectively. Consequently, 23
polymorphic markers were developed (Table 1), all of
which were codominant. Two PCR-based markers,
BN142CAPS and BN308CAPS, were also developed
from RFLP probes of B. napus.

Mapping and QTL analysis

The above-mentioned 23 markers were used for con-
struction of a linkage map based on the segregating F3
population (Hirai et al. 2004). These markers were
mapped in three linkage groups (LGs), LG 2, LG 3 and
LG 5. Eleven markers were mapped in LG 2, where
the previously identiWed CR locus, Crr3, was mapped

(Fig. 1). LG 2 also included Wve RAPDs, 11 SSRs and
two previously developed STSs (OPC11-1S and
OPC11-2S; Hirai et al. 2004). The presence of SSR
markers (Suwabe et al. 2006) and RFLP probe-derived
markers (BN142CAPS and BN308CAPS) indicated
that LG 2 corresponds to R3 of the internationally
agreed Brassica reference linkage groups (see http://
www.brassica.info/information/lg_assigments.htm),
whereas the correspondence of the other two LGs with
Brassica reference linkage groups was uncertain. The
order of the marker loci mapped in the three LGs in B.
rapa was the same as that in Arabidopsis chromosome
3 (Fig. 2), except for one change in LG 5. Four markers
in LG 2, OPC11-2S, BrSTS-33, BrSTS-54 and BrSTS-
61, were cosegregated in this population.

QTL analysis was conducted using the constructed
map. A sharp peak in the LOD score was observed at the
above cosegregated loci (Fig. 1, bold types). The peak
LOD score was 27.2. This position explained 85.9% of
the phenotypic variation. Therefore, Crr3 is most likely
to be located in a region around these four markers.
TCR05-R, a linkage marker for CRb originally devel-
oped by Piao et al. (2004), was used for mapping in this
population. This marker was mapped in the same linkage
group, LG 2 (R3), at a distance of 37.9 cM from the peak
LOD score of the present CR (Fig. 1). Moreover, the

Fig. 1 A partial linkage map 
of the region containing Crr3 
and QTL analysis for clubroot 
resistance. Left: A linkage 
map containing the Crr3 
locus. Marker names and their 
genetic distances (cM) are 
indicated at the right and left 
sides of the linkage map, 
respectively. Markers 
preWxed with BRMS are SSR 
markers (Suwabe et al. 2002, 
2006). Those preWxed with OP 
are RAPD and RAPD-de-
rived STS markers (Hirai 
et al. 2004). Other markers 
were developed in this study 
(Table 1). Markers at the 
peak of the LOD score are 
shown in bold type. Right: 
The QTL likelihood-proWle 
for the CR trait. LOD score 
and map distance are
indicated on the x and y axes, 
respectively. The positions of 
markers are indicated with 
Wlled triangles on the LOD 
proWle. The peak value of the 
LOD score is also shown

LG 2

0 10 20 30

27.2

OPA070.0
OPC08-35.2
OPAB025.7
OPAA196.2

BRMS32215.4
BRMS05822.2
OPC11-1S29.1
BN142CAPS31.7
BN308CAPS33.0
BrSTS-2634.0
BrSTS-72 BrSTS-6934.4

35.4
BrSTS-54 BrSTS-61
BrSTS-33 OPC11-2S

36.5

BrSTS-4437.0
BrSTS-4137.4
BrSTS-3538.6
BrSTS-2040.4
BRMS15848.8
OPB0550.7
BRMS20651.6
BRMS050 BRMS042-1
BRMS32863.9

BRMS042-264.4

TCR05-R74.4
BrSTS-40678.2

BRMS124-R84.1

BRMS08493.6
BRMS17695.4

BrSTS-78
123

http://www.brassica.info/information/lg_assigments.htm


Theor Appl Genet (2006) 114:81–91 87
LOD score at TCR05-R was 2.04 and did not show any
peak. This observation was conWrmed by another STS
marker linked to CRb, BrSTS-406, which was developed
in this study. Therefore, CRb and Crr3 are thought to be
diVerent loci that are independent of each other. These
results clearly show the monogenic nature of CR in this
population, as suggested previously (Hirai et al. 2004).

Fine mapping of Crr3

A total of 888 F2 plants were used to obtain more
detailed information of the map position of Crr3. The
seedlings of the population were Wrst selected for recom-
bination between two DNA markers, BrSTS-20 and
BrSTS-26, which are located ca. 4 cM upstream and 3 cM
downstream from the peak position of the LOD score in
the segregating F3 population, respectively (Fig. 1). The
80 selected F2 individuals were then used to construct a
detailed linkage map around Crr3 (Fig. 3). A partial map
of 4.74 cM was obtained. We already reported two link-
age markers, OPC11-1S and OPC11-2S for Crr3. Among
them, only OPC11-2S was mapped at this distance. Two
markers (BrSTS-41 and BrSTS-44) and three markers
(OPC11-2S, BrSTS-54 and BrSTS-61) were cosegre-
gated, even in this population. F3 seeds were then

obtained by selWng of the selected F2 plants. The number
of F3 seeds obtained was enough for 21 F2 families. These
seeds were then used for the CR test. The results are
illustrated in Fig. 4. CR scores of the families were clearly
segregated into three ID scores: (1) less than 0.1, (2)
more than 2.7, and (3) intermediate (from 0.6 to 1.8).
Because QTL analysis suggested that CR in this popula-
tion was monogenic in nature, these segregants could be
classiWed into three corresponding categories: (1) homo-
zygotes for the resistant allele, (2) homozygotes for the
susceptible allele, and (3) heterozygotes, respectively
(Fig. 4). The CR scores and genotypes of the F2 families
were compared. The genotypes between BrSTS-33 and
BrSTS-78 (0.35 cM) did not show discrepancy with the
ID scores obtained. Therefore, the CR locus, Crr3, is
likely to be located within this region.

Discussion

Use of genomic information of Arabidopsis to obtain 
genetic markers in B. rapa

The model plant A. thaliana is a close relative of Bras-
sica species that are extensively cultivated as oil and

Fig. 2 Three linkage groups 
(LGs) of B. rapa showing 
synteny to the top arm of Ara-
bidopsis chromosome 3. LGs 
of B. rapa and Arabidopsis 
chromosome 3 are repre-
sented by open and dotted 
boxes, respectively. The Ara-
bidopsis chromosome is 
shown upside down. Markers 
on LG 2 (R3) are only partly 
shown here (see Fig. 1). Fig-
ures are not to scale
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vegetable crops worldwide. The whole genome of
A. thaliana has been sequenced (Arabidopsis Genome
Initiative 2000), and Arabidopsis genome information

has been eVectively used in comparative genome anal-
ysis of Brassica species. In addition, some parts of the
genome structure are conserved, even in distantly
related species, such as rice (Mayer et al. 2001), tomato
(Ku et al. 2000) and legumes (Kevei et al. 2005).

Brassica species and Arabidopsis are classiWed in the
same family, Brassicaceae, and are thought to have
evolved from a common ancestor ca. 14.5–20.4 million
years ago (Yang et al. 1999). The genome sizes of
diploid Brassica species are estimated to be three- to
four-fold larger than those of Arabidopsis (Johnston
et al. 2005). Many studies have compared Brassica and
Arabidopsis genomes based on linkage and/or physical
maps (Lagercrantz 1998; Axelsson et al. 2001; Rana
et al. 2004; Suwabe et al. 2006). These studies have
revealed that small genomic segments of Arabidopsis
are triplicated and dispersed throughout the Brassica
genome. In these small segments, the order of genes is
conserved, although some inversions and large-scale
deletions have been found (Cavell et al. 1998; O’Neill
and Bancroft 2000; Ryder et al. 2001). Therefore, the
genomic information of Arabidopsis can be used for
the Wne mapping of Brassica genomes.

We eVectively used the Arabidopsis genome infor-
mation for the detailed mapping of the targeted
regions in the B. rapa genome around Crr3. Because
exon sequences are generally conserved in evolution,
we designed primers based on the exon sequences of
Arabidopsis. However, 41% of the primer pairs did not
amplify DNA fragments in B. rapa. Several hypotheses
could account for this failure of ampliWcation. Because
all gene loci in the Arabidopsis genome have not been
experimentally characterized, some of the ORFs that
we chose to use for primer design may be less con-
served, nonfunctional genes. Thus, divergence of exon
sequence during evolution could have caused the fail-
ure of ampliWcation. Alternatively, some of the coding
regions of the Arabidopsis genome may have been lost
in the Brassica genome during the course of evolution,
as shown by Rana et al. (2004). We included introns for
the targeted region of the ampliWcation to obtain poly-
morphisms. Insertion of long introns into the Brassica
DNA may also have caused failure of the ampliWca-
tion. After sequencing the ampliWed fragments, we
obtained 23 polymorphic markers, half of which were
mapped in the target region of LG 2. The overall per-
centage of the obtained linkage markers (11/
82 = 13.4%) may be useful for future studies on Bras-
sica species, since we do not have any information on
the divergence of triplicated sequences in this region.

The rest of the polymorphic STS markers were
mapped in diVerent LGs (LG 3 and LG 5), even
though their primers were designed based on the same

Fig. 3 A partial linkage map of B. rapa in the region of Crr3 (LG
2 (R3)) based on an F2 population (n = 888) and a corresponding
physical map of Arabidopsis. Marker names of the B. rapa LG
and gene loci of Arabidopsis are shown at the left and right sides
of Arabidopsis chromosome 3, respectively. Genetic distances be-
tween markers in the B. rapa linkage map are given in cM.
Approximate nucleotide distances between the loci of Arabidop-
sis are shown in kb. Two markers (BrSTS-41 and BrSTS-44) and
three markers (OPC11-2S, BrSTS-54 and BrSTS-61) were coseg-
regated, respectively, in this mapping population
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chromosomal region from Arabidopsis. These markers
did not fall into LG 2 when the minimum LOD score
was lowered to 3.0 during map construction (data not
shown). Therefore, the three LGs seem to be indepen-
dent, although their detailed chromosomal assign-
ments remain incomplete. Some loci have been
duplicated and are scattered throughout the Brassica
genome during evolution. We may have picked up
polymorphisms of such paralogous loci, resulting in
them being mapped to LGs diVerent from LG 2. Alter-
natively, duplication and loss may have occurred in
some loci during the evolution of the Brassica genome.
Further study using more gene-speciWc markers could
clarify this issue.

The origin of CR loci in B. rapa

Earlier studies of CR in turnips suggested that there
were three independent CR genes in B. rapa (Buczacki
et al. 1975; Toxopeus and Janssen 1975). However, Wve
CR loci have recently been identiWed in B. rapa using
molecular markers, of which the sequence information

has been disclosed for four (Piao et al. 2004; Suwabe
et al. 2006; this study). In this study, we mapped link-
age markers for CRb and Crr3 to the same linkage
group. The linkage group should be R3, because of
common markers (Suwabe et al. 2006). Linkage mark-
ers for Crr1 and Crr2 show homology to the central
part of the long arm of Arabidopsis chromosome 4
(Suwabe et al. 2006). We also found that linkage mark-
ers for CRb (TCR05-R and BrSTS-406) show homol-
ogy to the same part of the Arabidopsis genome
(Table 1). Therefore, these three CR genes may have
originated from the same part of the ancestral genome.
In this Wne mapping study, we clearly show that the
genomic region around Crr3 has synteny to the top of
the long arm of Arabidopsis chromosome 3. Therefore,
the origin of Crr3 seems to be diVerent from that of the
other three CR loci, Crr1, Crr2 and CRb. The map
position of another CR locus, CRa, is not yet known,
because sequence information of its linkage markers
has not been disclosed (Matsumoto et al. 1998). Fuchs
and Sacristán (1996) reported a CR locus (RPB1) in
Arabidopsis chromosome 1. Therefore, at least three

Fig. 4 Graphical genotype of 
the selected recombinants and 
their clubroot disease index 
(ID) in the F2 population. 
Name of lines and IDs are 
shown at the left and right, 
respectively. Marker names 
are indicated at the top of the 
column. Homozygotes of the 
resistant allele (N-WMR-3), 
homozygotes of the suscepti-
ble allele (A9709) and hetero-
zygotes, are represented by 
dotted, Wlled and hatched box-
es, respectively. Regions of 
unknown genotype due to 
marker intervals are shown by 
open boxes. The putative loca-
tion of the Crr3 gene is indi-
cated with arrows
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parts of the ancestral genome may be involved in the
evolution of CR genes in crucifer plants. Although
many studies have reported the mapping of CR genes
in B. oleracea, no sequence information is available
(Grandclément and Thomas 1996; Voorrips et al. 1997;
Nomura et al. 2005). Therefore, the origin of CR genes
in B. oleracea remains unknown. Reciprocal mapping
of anchor markers to the previous linkage maps as well
as our map will be necessary to clarify the correspon-
dence of each CR locus in detail.

In addition, for further understanding of the evolu-
tion of the CR loci, it will be necessary to clone these
CR genes and compare them at the nucleotide level.
We have developed a number of high-density linkage
markers to Crr3, which would enable the map-based
cloning of Crr3.

Breeding of CR cultivars using DNA markers 
in B. rapa

Breeding of CR Chinese cabbage cultivars was based
on the assumption that CR is controlled by a single
dominant locus (Yoshikawa 1993). In this context, a
simple backcross was an eVective way to introduce one
CR locus to the Chinese cabbage. However, infection
of some CR cultivars has been reported in some pro-
duction areas in Japan (Kuginuki et al. 1999), indicat-
ing a breakdown of the introduced CR trait. Breeding
of more resistant CR cultivars is therefore desirable.
Most of the present CR Chinese cabbage cultivars in
Japan are F1 hybrids between CR and clubroot-suscep-
tible parents. Therefore, they would be heterozygous
at the CR locus. Some CR loci show partial dominance
and CR homozygotes are more resistant than hetero-
zygotes (Suwabe et al. 2006). In addition, considering
the variation in the pathogen, a single CR gene would
not be enough to protect Brassica crops from some vir-
ulent populations of P. brassicae (Hatakeyama et al.
2004). Breeding of more resistant CR cultivars would
require the accumulation of more than two CR genes
in a single cultivar. Pyramiding CR genes with MAS
may be an ideal strategy for this complex breeding pro-
cedure. The linkage markers of Crr3 developed in the
present study are codominant and PCR-based mark-
ers. Their polymorphisms are easily detectable with
agarose gel electrophoresis. Thus, they will be an eVec-
tive tool in marker-assisted pyramiding of CR genes in
Chinese cabbage and other Brassica crops.
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